Breaking News

Popular News





Enter your email address below and subscribe to our newsletter
Deepseek AI International

Whether you’re optimizing a chatbot, training a custom model, or scaling an AI-driven product, this guide will show you how to make the most of every DeepSeek capability.
The DeepSeek API Platform is modular — meaning you can mix and match models for specific use cases:
| Model | Description | Ideal Use Case |
|---|---|---|
| deepseek-llm-v3 | Core large language model | General reasoning, summarization |
| deepseek-chat | Conversation-tuned LLM | Chatbots, assistants |
| deepseek-coder-v2 | Code understanding & generation | IDE integrations, debugging |
| deepseek-vl | Vision-language model | Image analysis, multimodal tasks |
| deepseek-math | Symbolic + numeric reasoning | Education, engineering tools |
| deepseek-logic | Rule-based reasoning layer | Workflows, decision systems |
👉 Combine them freely via API chaining for custom pipelines.
Fine-tuning lets you adapt DeepSeek’s models to your unique domain or tone.
Best for small datasets and style alignment.
client.chat.create(
model="deepseek-llm",
messages=[
{"role": "system", "content": "Respond in a confident, concise corporate tone"},
{"role": "user", "content": "Write a 1-sentence mission statement for a fintech startup"}
]
)
For enterprise or data-heavy training:
.jsonl dataset:{"prompt": "User says hello", "completion": "Hi there! How can I assist you?"}
{"prompt": "Explain quantum computing", "completion": "Quantum computing uses qubits..."}
Your fine-tuned model will appear under your organization’s namespace:
model: your-org/deepseek-chat-custom
For chatbots or interactive apps, streaming ensures minimal latency.
for chunk in client.chat.stream(
model="deepseek-chat",
messages=[{"role": "user", "content": "Summarize the meeting notes."}]
):
print(chunk.output, end="", flush=True)
This streams tokens in real-time — perfect for dynamic frontends or conversational UX.
The DeepSeek Embedding API turns text, code, or image data into numeric vectors for semantic search.
response = client.embeddings.create(
model="deepseek-embed",
input="How to automate customer support?"
)
print(response.embedding[:10]) # first 10 vector values
Use cases:
💡 Pro Tip: Combine deepseek-embed with deepseek-llm for RAG pipelines that pull real data before generating answers.
You can combine DeepSeek’s APIs to create intelligent pipelines.
Example: Auto-analyze customer feedback images and generate a sentiment summary.
Image → deepseek-vl (visual analysis)
↓
Result → deepseek-llm (summary & insights)
# Step 1: Extract text and context from image
image_analysis = client.vl.analyze(image="product_review.png")
# Step 2: Generate insights
summary = client.chat.create(
model="deepseek-llm",
messages=[
{"role": "system", "content": "Summarize product sentiment"},
{"role": "user", "content": image_analysis.output}
]
)
Result:
“Overall sentiment is positive. Users appreciate durability but note higher price point.”
The DeepSeek Memory Layer allows stateful interactions — your app can “remember” previous sessions.
client.memory.create(
session_id="user123",
data={"conversation": "previous chat history"}
)
Then:
client.chat.create(
model="deepseek-chat",
memory_id="user123",
messages=[{"role": "user", "content": "Remind me what we discussed last time"}]
)
This makes DeepSeek ideal for AI assistants, tutors, and customer service apps.
For heavy API users:
responses = await asyncio.gather(*[
client.chat.create_async(model="deepseek-chat", messages=[{"role": "user", "content": msg}])
for msg in messages_list
])
The DeepSeek Dashboard provides:
All logs are exportable to Datadog, New Relic, or Grafana for enterprise observability.
DeepSeek was engineered for modern data compliance:
Your data never gets reused for training without explicit consent — ideal for regulated sectors like finance and healthcare.
Here’s how advanced integrations typically flow:
┌──────────────────────────┐
│ User Application │
│ (App / CRM / Backend) │
└────────────┬─────────────┘
│
▼
┌──────────────────────────┐
│ DeepSeek API Gateway │
│ • Chat / LLM / Embed / VL│
└────────────┬─────────────┘
│
▼
┌──────────────────────────┐
│ Model Orchestration Layer│
│ (Chaining + Memory) │
└────────────┬─────────────┘
│
▼
┌──────────────────────────┐
│ DeepSeek Core LLM Engine │
│ (Reasoning & Context) │
└────────────┬─────────────┘
▼
┌──────────────────────────┐
│ Output Delivery (JSON / Stream) │
└──────────────────────────┘
DeepSeek’s API Platform isn’t just an interface — it’s a developer’s AI operating system.
From embeddings and fine-tuning to real-time streaming and reasoning logic, it gives you everything you need to build smarter, faster, and more cost-efficient AI solutions.
So whether you’re building chatbots, automation engines, or multimodal tools — the key is in mastering these advanced DeepSeek features.