Breaking News

Popular News







Enter your email address below and subscribe to our newsletter
Deepseek AI International

Building a modern full-stack web application from scratch can be daunting — you need to design the backend, connect a database, create APIs, build a frontend, and make sure everything integrates smoothly.
Now imagine doing all that in hours, not days, with AI that writes, explains, and optimizes your code in real time.
Welcome to DeepSeek Coder V2 — your full-stack AI co-developer.
In this tutorial, we’ll build a complete full-stack web app using DeepSeek Coder V2, from concept to deployment.
You’ll see how DeepSeek Coder helps you:
Let’s build. ⚙️
We’ll build a simple yet scalable Task Manager App — allowing users to:
💡 Goal: Demonstrate how DeepSeek Coder accelerates every stage of full-stack development.
“Generate a FastAPI app with a PostgreSQL database connection and a /tasks CRUD API.”
DeepSeek Output:
# main.py
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List
import psycopg2
app = FastAPI()
class Task(BaseModel):
id: int | None = None
title: str
description: str
completed: bool = False
conn = psycopg2.connect(
dbname="tasksdb",
user="postgres",
password="password",
host="localhost"
)
@app.get("/tasks", response_model=List[Task])
def get_tasks():
cur = conn.cursor()
cur.execute("SELECT id, title, description, completed FROM tasks;")
rows = cur.fetchall()
return [Task(id=r[0], title=r[1], description=r[2], completed=r[3]) for r in rows]
@app.post("/tasks", response_model=Task)
def create_task(task: Task):
cur = conn.cursor()
cur.execute(
"INSERT INTO tasks (title, description, completed) VALUES (%s, %s, %s) RETURNING id;",
(task.title, task.description, task.completed)
)
task.id = cur.fetchone()[0]
conn.commit()
return task
✅ Backend scaffolded.
✅ CRUD endpoints ready.
✅ Auto-generated Pydantic models.
💬 DeepSeek Coder even suggested adding connection pooling for scalability.
Prompt:
“Add JWT-based authentication to protect all /tasks endpoints.”
DeepSeek Output (excerpt):
from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm
from jose import jwt, JWTError
from datetime import datetime, timedelta
SECRET_KEY = "supersecret"
ALGORITHM = "HS256"
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
@app.post("/token")
def login(form_data: OAuth2PasswordRequestForm = Depends()):
if form_data.username == "admin" and form_data.password == "admin":
token = jwt.encode({"sub": form_data.username, "exp": datetime.utcnow() + timedelta(hours=1)}, SECRET_KEY, algorithm=ALGORITHM)
return {"access_token": token, "token_type": "bearer"}
raise HTTPException(status_code=401, detail="Invalid credentials")
@app.get("/tasks")
def get_tasks(token: str = Depends(oauth2_scheme)):
try:
jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
except JWTError:
raise HTTPException(status_code=401, detail="Invalid token")
# proceed with tasks query
✅ Authentication added.
✅ Protected routes.
✅ Tokens expire automatically.
💡 DeepSeek also provided notes on environment variable management using python-dotenv.
Prompt:
“Generate a React frontend with Tailwind CSS that connects to the /tasks API for CRUD operations.”
DeepSeek Output:
npm create vite@latest task-manager --template react
cd task-manager
npm install axios react-router-dom tailwindcss
npx tailwindcss init
App.jsx (Generated):
import { useState, useEffect } from "react";
import axios from "axios";
export default function App() {
const [tasks, setTasks] = useState([]);
const [title, setTitle] = useState("");
useEffect(() => {
axios.get("/tasks").then(res => setTasks(res.data));
}, []);
const addTask = async () => {
const res = await axios.post("/tasks", { title, description: "", completed: false });
setTasks([...tasks, res.data]);
setTitle("");
};
return (
<div className="max-w-xl mx-auto p-4">
<h1 className="text-3xl font-bold mb-4">DeepSeek Task Manager</h1>
<input
className="border p-2 w-full"
placeholder="Add new task"
value={title}
onChange={e => setTitle(e.target.value)}
/>
<button onClick={addTask} className="bg-blue-600 text-white px-4 py-2 mt-2 rounded">
Add
</button>
<ul className="mt-4">
{tasks.map(t => (
<li key={t.id} className="p-2 border-b">{t.title}</li>
))}
</ul>
</div>
);
}
✅ Functional UI generated.
✅ API integration done.
✅ Uses Tailwind for instant styling.
💬 DeepSeek even recommended using React Query for caching later.
Prompt:
“Show me how to proxy API requests from Vite frontend to FastAPI backend during local development.”
DeepSeek Output:
// vite.config.js
export default {
server: {
proxy: {
'/tasks': 'http://127.0.0.1:8000'
}
}
};
💡 Explanation:
“This ensures all requests to
/tasksare redirected to FastAPI backend while developing locally.”
✅ Cross-origin issues solved.
✅ Dev environment integrated.
Prompt:
“Generate pytest tests for the FastAPI endpoints and explain what each test checks.”
DeepSeek Output:
from fastapi.testclient import TestClient
from main import app
client = TestClient(app)
def test_create_task():
res = client.post("/tasks", json={"title": "Test Task", "description": "Check"})
assert res.status_code == 200
assert res.json()["title"] == "Test Task"
def test_get_tasks():
res = client.get("/tasks")
assert res.status_code == 200
assert isinstance(res.json(), list)
✅ Automated tests.
✅ Readable and reusable.
✅ Explanation of assertions provided automatically.
Prompt:
“Generate a professional README.md for this full-stack app.”
DeepSeek Output:
# DeepSeek Task Manager
A full-stack web app built using FastAPI, PostgreSQL, and React — created with DeepSeek Coder V2.
## Features
- Secure JWT Authentication
- Full CRUD API
- Responsive React UI
- Unit Tests & Documentation
- Optimized for Scalability
## Setup
1. Run `uvicorn main:app --reload` for backend.
2. Run `npm run dev` for frontend.
3. Visit `http://localhost:5173`.
✅ Clean, structured, and professional documentation — instantly ready for GitHub.
Prompt:
“Optimize this full-stack project for deployment on Render or Vercel.”
DeepSeek Recommendations:
.env for secrets and DB credentials/dist → static hostingDockerfile for container deploymentGenerated Dockerfile:
FROM python:3.11-slim
WORKDIR /app
COPY . .
RUN pip install -r requirements.txt
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]
✅ Deployment-ready.
✅ Cross-platform and scalable.
| Task | Manual Time | With DeepSeek Coder |
|---|---|---|
| Backend scaffolding | 2–3 hours | 6 minutes |
| Auth setup | 1.5 hours | 3 minutes |
| Frontend integration | 3 hours | 10 minutes |
| Testing & docs | 2 hours | 5 minutes |
| Deployment setup | 1 hour | 5 minutes |
💡 Total saved: ~8 hours per developer — per project.
That’s a full workday regained.
DeepSeek Coder V2 doesn’t just generate snippets — it builds entire systems with reasoning, structure, and best practices.
In this tutorial, you:
This is the new era of development:
AI-assisted full-stack engineering that’s explainable, scalable, and lightning fast.